Some remarks on ruled surfaces
نویسندگان
چکیده
منابع مشابه
Approximation by ruled surfaces
Given a surface or scattered data points from a surface in 3-space, we show how to approximate the given data by a ruled surface in tensor product B-spline representation. This leads us to a general framework for approximation in line space by local mappings from the Klein quadric to Euclidean 4-space. The presented algorithm for approximation by ruled surfaces possesses applications in archite...
متن کاملSome Remarks on Brauer Groups of K3 Surfaces
We discuss the geometry of the genus one fibrations associated to an elliptic fibration on a K3 surface. We show that the two-torsion subgroup of the Brauer group of a general elliptic fibration is naturally isomorphic to the two-torsion of the Jacobian of a curve associated to the fibration. We remark that this is related to Recillas’ trigonal construction. Finally we discuss the two-torsion i...
متن کاملSome Remarks on the Severi Varieties of Surfaces in P
Continuing the work of Chiantini and Ciliberto on the Severi varieties of curves on surfaces in P, we complete the proof of the existence of regular components for such varieties. 2000 Mathematics Subject Classification. Primary 14H10, 14B07
متن کاملSome Remarks Concerning Integrals of Curvature on Curves and Surfaces
In this paper we discuss some topics that came up in Chapters 2 and 3 of Part III of [8]. These involve relations between derivatives of Cauchy integrals on curves and surfaces and curvatures of the curves and surfaces. In R for n > 2, “Cauchy integrals” can be based on generalizations of complex analysis using quarternions or Clifford algebras (as in [3]). Part of the point here is to bring ou...
متن کاملRuled Laguerre minimal surfaces
A Laguerre minimal surface is an immersed surface in R being an extremal of the functional ∫ (H/K− 1)dA. In the present paper, we prove that any ruled Laguerre minimal surface distinct from a plane is up to motion a convolution of the helicoid x = y tan z, the cycloid r(t) = (t− sin t, 1−cos t, 0) and the Plücker conoid (ax+ by) = z(x+y) for some a, b ∈ R. To achieve invariance under Laguerre t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1949
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1949-09350-3